Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Carbohydr Polym ; 285: 119256, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287870

RESUMO

The enzymatic hydrolysis of native starch lacks efficiency because starch is mostly confined in semi-crystalline granules. To address the challenges associated with gelatinization and render native cassava starch (CS) amenable to enzymatic hydrolysis (enzyme cocktail from Aspergillus awamori and Trichoderma reesei), dry-extrusion pretreatment of CS mixed with sugarcane bagasse (SB) was studied. Results showed that among the CS:SB mass ratios studied (1:1; 1:0.5 and 1:0.25), extruded CS:SB (1:0.25) gave the highest 3-hour glucose yield (71.5%) after enzymatic hydrolysis. Extrusion reduced CS:SB (1:0.25) crystallinity by 78% and increased the intensity of all major FTIR absorption bands by 67-202%. The optimum 3-hour glucose yield from extruded CS:SB (1:0.25) hydrolysis was 74.1%, which was 330% higher than from untreated CS. The water absorption and solubility indices of the treated biomass increased by 145% and 12,640%, respectively under the optimum conditions, aiding the hydrolysis process. The dry extrudates were easy to manipulate and store.


Assuntos
Manihot , Saccharum , Celulose/química , Hidrólise , Manihot/química , Saccharum/química , Amido/química
2.
Sci Rep ; 9(1): 10939, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358799

RESUMO

The açaí seed corresponds to approximately 85% of the fruit's weight and represents ~1.1 million metric tons of residue yearly accumulated in the Amazon region, resulting in an acute environmental and urban problem. To extract the highest value from this residue, this study aimed to evaluate its chemical composition to determine the appropriate applications and to develop conversion methods. First, mannan was confirmed as the major component of mature seeds, corresponding to 80% of the seed's total carbohydrates and about 50% of its dry weight. To convert this high mannan content into mannose, a sequential process of dilute-acid and enzymatic hydrolysis was evaluated. Among different dilute-H2SO4 hydrolysis conditions, 3%-acid for 60-min at 121 °C resulted in a 30% mannan hydrolysis yield and 41.7 g/L of mannose. Because ~70% mannan remained in the seed, a mannanase-catalyzed hydrolysis was sequentially performed with 2-20% seed concentration, reaching 146.3 g/L of mannose and a 96.8% yield with 20% solids. As far as we know, this is the highest reported concentration of mannose produced from a residue. Thus, this work provides fundamental data for achieving high concentrations and yields of mannose from açaí seeds, which could add commercial value to the seeds and improve the whole açaí productive chain.


Assuntos
Euterpe/química , Manose/química , Manosidases/metabolismo , Biocatálise , Hidrólise , Sementes/química , Ácidos Sulfúricos/química , Temperatura
3.
Braz. j. microbiol ; 44(2): 569-576, 2013. graf, tab
Artigo em Inglês | LILACS | ID: lil-688590

RESUMO

The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 ºC and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture.


Assuntos
Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Xilosidases/metabolismo , beta-Glucosidase/metabolismo , Aspergillus/genética , Aspergillus/crescimento & desenvolvimento , Carbono/metabolismo , Meios de Cultura/química , Nitrogênio/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...